3.9.1 \(\int \frac {a+b \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [801]

3.9.1.1 Optimal result
3.9.1.2 Mathematica [A] (verified)
3.9.1.3 Rubi [A] (verified)
3.9.1.4 Maple [B] (verified)
3.9.1.5 Fricas [C] (verification not implemented)
3.9.1.6 Sympy [F(-1)]
3.9.1.7 Maxima [F]
3.9.1.8 Giac [F]
3.9.1.9 Mupad [B] (verification not implemented)

3.9.1.1 Optimal result

Integrand size = 21, antiderivative size = 111 \[ \int \frac {a+b \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 b \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 b \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

output
-6/5*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d 
*x+1/2*c),2^(1/2))/d+2/3*a*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c) 
*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*b*sin(d*x+c)/d/cos(d*x+c)^(5/ 
2)+2/3*a*sin(d*x+c)/d/cos(d*x+c)^(3/2)+6/5*b*sin(d*x+c)/d/cos(d*x+c)^(1/2)
 
3.9.1.2 Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.86 \[ \int \frac {a+b \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {-18 b \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 a \cos ^{\frac {3}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+10 a \sin (c+d x)+9 b \sin (2 (c+d x))+6 b \tan (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)} \]

input
Integrate[(a + b*Sec[c + d*x])/Cos[c + d*x]^(5/2),x]
 
output
(-18*b*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + 10*a*Cos[c + d*x]^(3 
/2)*EllipticF[(c + d*x)/2, 2] + 10*a*Sin[c + d*x] + 9*b*Sin[2*(c + d*x)] + 
 6*b*Tan[c + d*x])/(15*d*Cos[c + d*x]^(3/2))
 
3.9.1.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.524, Rules used = {3042, 4713, 3042, 3227, 3042, 3116, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 4713

\(\displaystyle \int \frac {a \cos (c+d x)+b}{\cos ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a \sin \left (c+d x+\frac {\pi }{2}\right )+b}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3227

\(\displaystyle a \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)}dx+b \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+b \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3116

\(\displaystyle a \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+b \left (\frac {3}{5} \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+b \left (\frac {3}{5} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle a \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+b \left (\frac {3}{5} \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )+\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+b \left (\frac {3}{5} \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle a \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+b \left (\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {3}{5} \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle a \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+b \left (\frac {2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {3}{5} \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\)

input
Int[(a + b*Sec[c + d*x])/Cos[c + d*x]^(5/2),x]
 
output
a*((2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*Sin[c + d*x])/(3*d*Cos[c + d*x 
]^(3/2))) + b*((2*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + (3*((-2*Ellipti 
cE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])))/5)
 

3.9.1.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 4713
Int[(csc[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_), x_Symbol] :> Int[ActivateT 
rig[u]*((B + A*Sin[a + b*x])/Sin[a + b*x]), x] /; FreeQ[{a, b, A, B}, x] && 
 KnownSineIntegrandQ[u, x]
 
3.9.1.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(501\) vs. \(2(147)=294\).

Time = 15.05 (sec) , antiderivative size = 502, normalized size of antiderivative = 4.52

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 a \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )+\frac {2 b \left (24 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-12 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-24 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{5 \left (8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-12 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(502\)

input
int((a+b*sec(d*x+c))/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)
 
output
-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*a*(-1/6*cos( 
1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1 
/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/ 
2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellip 
ticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2/5*b/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2 
*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*sin(1/2*d 
*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(c 
os(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/ 
2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*(sin(1/2*d*x+1/2*c)^2 
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^( 
1/2)*sin(1/2*d*x+1/2*c)^2+8*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-3*(sin 
(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2* 
d*x+1/2*c)^2-1)^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2 
))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.9.1.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 188, normalized size of antiderivative = 1.69 \[ \int \frac {a+b \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {-5 i \, \sqrt {2} a \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} a \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 i \, \sqrt {2} b \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 i \, \sqrt {2} b \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (9 \, b \cos \left (d x + c\right )^{2} + 5 \, a \cos \left (d x + c\right ) + 3 \, b\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{3}} \]

input
integrate((a+b*sec(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="fricas")
 
output
1/15*(-5*I*sqrt(2)*a*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c 
) + I*sin(d*x + c)) + 5*I*sqrt(2)*a*cos(d*x + c)^3*weierstrassPInverse(-4, 
 0, cos(d*x + c) - I*sin(d*x + c)) - 9*I*sqrt(2)*b*cos(d*x + c)^3*weierstr 
assZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) 
+ 9*I*sqrt(2)*b*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse( 
-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(9*b*cos(d*x + c)^2 + 5*a*cos(d 
*x + c) + 3*b)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)
 
3.9.1.6 Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+b*sec(d*x+c))/cos(d*x+c)**(5/2),x)
 
output
Timed out
 
3.9.1.7 Maxima [F]

\[ \int \frac {a+b \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {b \sec \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+b*sec(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="maxima")
 
output
integrate((b*sec(d*x + c) + a)/cos(d*x + c)^(5/2), x)
 
3.9.1.8 Giac [F]

\[ \int \frac {a+b \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {b \sec \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+b*sec(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="giac")
 
output
integrate((b*sec(d*x + c) + a)/cos(d*x + c)^(5/2), x)
 
3.9.1.9 Mupad [B] (verification not implemented)

Time = 15.04 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.78 \[ \int \frac {a+b \sec (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int((a + b/cos(c + d*x))/cos(c + d*x)^(5/2),x)
 
output
(2*a*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c 
+ d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (2*b*sin(c + d*x)*hypergeom([-5/4, 
1/2], -1/4, cos(c + d*x)^2))/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/2 
))